Welcome to **instats**

The Session Will Begin Shortly

Statistics in R with Tidyverse

Session 10: One- and Two-Sample Hypothesis Tests

Framework for Hypothesis Tests

- Hypothesis testing: make inferences about population based on a sample
- Null hypothesis (H₀): assumed true, no effect or difference
- Alternative hypothesis (H_A): claim against H₀, need evidence to reject H₀

Comparing Hypothesis Tests to Criminal Trials

- Null Hypothesis: Similar to presumption of innocence ("innocent until proven guilty")
- Alternative Hypothesis: Similar to the prosecutor's claim ("guilty")
- Decision:
 - **Reject H**₀: Sufficient evidence to reject innocence (guilty verdict)
- Fail to reject H_0 : Not enough evidence to reject innocence (not guilty, but not necessarily innocent)
- **Type I Error**: Wrongly convicting an innocent person (rejecting H₀ when it is true)
- **Type II Error**: Letting a guilty person go free (failing to reject H₀ when H_A is true)
- Significance level (α) = "beyond a reasonable doubt"

One-Sample Hypothesis Test

- \bullet Example: Test claim about population mean, μ
- Null hypothesis: μ = 3.6 grams (average almond weight)
- Alternative hypothesis: μ < 3.6 grams
- Goal: determine likelihood of observing a sample mean as extreme as observed

Types of Hypothesis Tests

- **Two-sided test**: evidence against H_0 comes from both directions (greater or less)
- **One-sided test**: evidence against H₀ comes from one direction only
- Examples:
 - left-sided test (H_A: μ < 3.6)
 - right-sided test (H_A: $\mu > 3.6$)
 - two-sided test (H_A : μ 3.6)

Steps in Hypothesis Testing

- 1. Define H₀ and H_A (null and alternative hypotheses)
- 2. Choose significance level α (e.g., 0.05)
- 3. Calculate test statistic (e.g., t statistic for one-sample tests)
- 4. Compare *p*-value calculated from test statistic to α
- 5. Make decision and interpret results in the context of the problem

Theory-Based Hypothesis Test Example

- Calculate sample mean and standard deviation
- Test statistic formula: $t = \frac{\bar{x} \mu}{s/\sqrt{n}}$
- Calculate *p*-value for significance

Simulation-Based Hypothesis Testing

- Use permutation tests to simulate null hypothesis scenario
- Shuffle data to simulate "no effect" world
- Calculate test statistic for each shuffle to form null distribution

P-Value and Statistical Significance/Discernibility

- *P***-value**: probability of observing a test statistic as extreme as the observed one, assuming H₀ is true
- If *p*-value < α , reject H₀ (evidence against H₀ is strong)
- Example: *p*-value = 0.03, α = 0.05 \rightarrow reject H₀

Connection Between Hypothesis Testing and Confidence Intervals

- If the null value is outside the confidence interval, reject H₀
- Example: 95% CI does not contain 3.6 \rightarrow reject H₀

Demo & Exercises

Welcome to **instats**

The Session Will Begin Shortly

Statistics in R with Tidyverse

Session 11: Inference for Regression

Introduction to Statistical Inference for Regression

- Regression helps us explore relationships between variables
- Inference allows us to make conclusions about these relationships
- Types of regression:
 - Simple Linear Regression: One predictor/regressor, one response
 - Multiple Linear Regression: More than one predictor/regressor for

the response

Simple Linear Regression (SLR)

- Focuses on the relationship between one explanatory variable and one response variable
- Goal: Estimate how much the response variable changes with one unit increase in the predictor

Inference for SLR Coefficients

- Confidence intervals: Estimate the range of the true slope for one predictor
- Hypothesis testing: Check if the predictor has a significant effect on the response
 - Null hypothesis: No effect (slope = 0)
 - Alternative hypothesis: There is an effect (slope \neq 0)

Multiple Linear Regression

- Multiple predictors are used to explain the response variable
- Each predictor explains a unique part of the variability in the response
- Coefficients are adjusted for the presence of other predictors
- Identifies the contribution of each predictor while controlling for others
- Inference involves understanding the significance and confidence intervals

for each predictor's coefficient

Inference for MLR Coefficients

- Each predictor has its own **coefficient**, representing its unique impact
- Confidence intervals: Estimate the range of the true coefficients for each predictor
- Hypothesis testing: Check if each predictor has a significant effect on the response, controlling for other predictors

Key Differences in Inference

• In SLR: We are assessing the relationship between one predictor and the response

• In MLR: We assess each predictor's effect while controlling for the others

Model Fit and Assumptions

- For both SLR and MLR:
 - The relationships should be linear
 - Residuals should appear random and normally distributed
 - LINE acrostic
- In MLR: Check for **multicollinearity** (predictors should not be highly correlated)

Hypothesis Tests for Partial Slopes

- Formulating hypothesis tests
 - Null and alternative hypotheses
 - Conducting t-tests for regression coefficients
 - p-values and statistical significance
 - Practical implications and decision-making

Interpreting Results in MLR

• Each coefficient in MLR shows the effect of one predictor while

holding the others constant

- MLR can handle interaction terms and transformations
- Bootstrap methods can estimate confidence intervals when
- assumptions are violated
- Permutation tests can check the significance of predictors in MLR

Demo & Exercises

Welcome to **instats**

The Session Will Begin Shortly

Statistics in R with Tidyverse

Session 12: Storytelling with Data

Wrap-Up

- Journey through <u>ModernDive (Second Edition)</u>
- Explored key steps in the data science pipeline
- Applied tools and techniques for data wrangling, visualization, and modeling using computation and visualization as the drivers

Review: Data Science with tidyverse

- Learned to visualize data using ggplot2
- Mastered data wrangling with dplyr
- Understood the concept of "tidy" data with tidyr
- Imported and cleaned real-world data

Review: Statistical Modeling with moderndive

- Fitted simple linear regression models
- Expanded to multiple regression models with more than one predictor
- Interpreted coefficients and effects of predictors on the response

Review: Statistical Inference with infer

- Understood the role of sampling variability and sample size
- Constructed confidence intervals using bootstrapping and theory-based approaches
- Conducted hypothesis testing using theory-based and permutation methods

Final Thoughts: Thinking with Data

- Data-driven mindset
 - Asking the right questions
 - Approaching problems methodically
- Analytical thinking
 - Breaking down complex issues
 - Identifying patterns and trends
- Critical thinking
 - Evaluating sources
 - Checking validity of conclusions

Looking Forward: Telling Your Story with Data

- Use your new skills to tell data-driven stories
- Stay curious and continue to explore different data science workflows
- Keep refining your techniques and learning new tools

Short Walkthrough + Final Q&A

